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Summary A

This investigation aims at the elastostatic field near the edges
(tips) of a plane crack of finite width in an all-around infinite body, which—
at infinity — is subjected to a state of simple shear parallel to the crack
faces. The analysis is carried out within the fully nonlinear equilibrium
theory of homogeneous and isotropic, incompressible elastic solids.
Further, the particular constitutive law employed here gives rise to a
loss of ellipticity of the governing displacement equation of equilibrium
in the presence of sufficiently severe anti-plane shear deformations.

The study reported in this paper is asymptotic in the sense that
the actual crack is replaced by a semi-infinite one, while the far field is
required to match the elastostatic field predicted near the crack tips by
the linearized theory for a crack of finite width. The ensuing global

boundary-value problem thus characterizes the local state of affairs in

the vicinity of a crack-tip, provided the amount of shear applied at

infinity is suitably small.

%
The results communicated in this paper were obtained in the course of
an investigation supported by Contract N00014-75-C-0196 with the Office
4 of Naval Research in Washington, D. C.
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An explicit exact solution to this problem, which is deduced with
the aid of the hodograph method, exhibits finite shear stresses at the tips
of the crack, but involves two symmetrically located lines of displacement-

gradient and stress discontinuity issuing from each crack-tip.

Introduction

In a number of investigations conducted during the past few years
we have explored two distinct types of inherently nonlinear singular
problems in finite elastostatics. The first of these categories pertains
to geometrically induced point or line singularities, such as those arising
in connection with crack and punch problems, for which the linearized
theory of ealsticity — in conflict with its underlying approximative as-
sumptions — predicts locally unbounded deformation gradients. The second
category, which has no counterpart in linear elastostatics, concerns the
emergence of lines or surfaces across which the deformation gradients
suffer finite jump discontinuities. This kind of singular behavior becomes
possible only if the elastic material is such as to admit a failure of el-
lipticity in the corresponding displacement equations of equilibrium at

sufficiently severe deformations.

The results obtained in these investigations aresurnmarized in a
comprehensive survey [1], which also contains references to the related
background literaturel. The present paper extends, and combines strands
from, both strings of studies alluded to above. It deals with the elasto-
static field near the tip of a crack under conditions of anti-plane shear in

a constitutive setting within the fully nonlinear equilibrium theory that

1In this paper we shall cite explicitly only previous work that is of im-
mediate relevance to our current purpose.




leads to a loss of ellipticity and the concomitant appearance of lines of
deformation-gradient discontinuity (''elastostatic shocks'') in the vicinity

of the crack-tips,

The particular problem treated here is suggested by and complements

an asymptotic study reported in [2]. We consider an all-around infinite —
homogeneous and isotropic — incompressible elastic body with a plane
crack of constant width and infinite length. At infinity the body is sub-
jected to a state of simple shear, parallel to the faces of the crack. In
[2] the deformations and stresses ensuing near the tips (edges) of the
crack were analyzed for a class of such materials whose elastic potential
(strain-energy density) is completely determined by the shear-stress
response to a simple-shear deformation. Moreover, the analysis carried
out in [2] was confined to circumstances in which the induced shear stress
is a steadily increasing function of the amount of simple shear applied.

In this instance the displacement equations of equilibrium are found to be
elliptic at all field points and at every solution corresponding to anti-plane
shear. In contrast, ellipticity is lost at severe enough anti-plane shear
deformations if the response curve in simple shear undergoes at least

one reversal in slope.

The case in which the response curve in simple shear has a
positive slope throughout but rises monotonically to a finite shear stress —
as the amount of shear grows beyond bounds — thus signals an impending
breakdown of ellipticity, which would occur if the stress were to increase
steadily to a maximum value at a finite amount of shear and thereafter
declined monotonically. This troublesome transition case is still fully
discussed in [2] with the aid of the hodograph method and on the basis of

an asymptotic scheme in which the crack of finite width is replaced by one

......



of semi-infinite width, while the far field is required to match the elasto-
static field near the crack-tip predicted by the solution to the original
problem according to the linear theory.

The results deduced in [2] for the limiting elliptic case described
above, though of unlimited smoothness in the interior of the body, display
certain features that suggest the emergence of discontinuities in the
deformation gradients once ellipticity is lost. In order to explore this
eventuality by means of a pilot example we presuppose here a specific
response curve in simple shear that rises linearly to a maximum shear
stress and then declines steadily as the amount of shear increases. The
special constitutive assumption thus introduced enables us to establish
on the basis of the hodograph method an explicit exact solution to the

crack problem under present consideration. The solution thus obtained

involves two lines of displacement-gradient and stress discontinuity that ;

are symmetrically located with respect to the axis of the crack, issue

from the crack-tip, and terminate in the interior of the body.

1. Preliminaries. Finite anti-plane shear for incompressible elastic

solids. Formulation of crack problem.
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In this section we cite from [2] certain prerequisites needed here. 3 ‘

Suppose the interior of a body occupies an open region ® in an undeformed ' i

configuration and consider a deformation

y=y(x) =x+u(x) for all xR (1.1}

*
that maps R onto its deformation image R . Here x is the position

; i ; e *
vector of a material point in R, y(x) its position vector in R , and u(x)

1Boldfa.ce letters are used to denote vectors or tensors, '\%




its displacement vector. We assume the mapping (1. 1) to be suitably

smooth and invertible. Let
F=Vy=14%s on R , (1.2

so that E(ﬁ) is the deformation-gradient tensor at x. For an incompres-

sible medium the deformation must be locally volume preserving and thus

J=detF=1 on R (1.3)

i

The left deformation tensor associated with (1.1) is given by

9=EET (1.4)2

and has the fundamental scalar invariants

L=trG, L=3ltrG)P-tx(GD)] , L=detG=T%=1 . (1.5)

*
Next, let T be the actual (Cauchy) stress tensor fieldon R and

] the corresponding nominal (Piola) stress field on R, whence

T=gFT, g=1(E)" . (1.6)°

The balance of linear momentum, in the absence of body forces, leads to

the equilibrium equations
divt=0 on R' or divg=0 on R . (1.7)
Suppose further the incompressible medium at hand is a homo-

: geneous, isotropic, elastic solid that possesses a strain-energy density

W per unit undeformed volume. In this instance W=W(Il, Iz) and the

lWe write 1 for the idem-tensor.
2The superscript T indicates transposition.

H‘ 3If A is a nonsingular tensor, é-l stands for its inverse.
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appropriate constitutive law takes the equivalent alternative forms:

_of AW, W
=237, S* IZ‘Ili'Q)Q:]-Pl. (1.8)
4 [
9-=2[—3115"—3}';‘11,!.-9),5]-1»(5 P (1.9)

where p is the arbitrary hydrostatic pressure required to accommodate
the kinematical constraint (1.3). The stress-deformation relation (1. 8) :
assures the symmetry of T, but U is in general not symmetric.

If S is a surface in R and S* its deformation image in R*,

one has

% *
™ =0 on S if and only if On=0 on S , (1.10)

where n and B* are the respective unit normal vectors of S and S*.
Thus, in particular, a portion of the boundary of R* is free of actual
tractions provided the nominal traction vanishes on its antecedent within
the boundary R. Further the actual traction L:J‘g* is found to be
continuous across S* if and only if the nominal traction g=0n is
continuous across S.

With a view toward the crack problem that constitutes our objective
we now assume that R is the exterior of a plane infinite strip of width
2c. Further, we introduce rectangular cartesian coordinates (xl,xz,x3)
in such a way that this strip, which represents the crack, lies in the plane *
X,= 0, the x3-a.xia being parallel to the edges of the crack and the origin
midway between the edges. Figure 1 shows the cross-section 8 of R
in the plane Xy = 0. Evidently, the plane domain # is the exterior of the

line segment X,= 0, -CSXISC in the (xl,xz)-plane. We confine our

— -*,-.3.,‘
€ ',H@u‘.“‘_’_‘-."@:\' i
W r"!*”,}‘l s Ry
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attention now to the case in which the body is subjected at infinity
to a simple shear parallel to the crack fa.cesl. The displacement

components u, are thus required to satisfyz
ua=o(1) » Ug= kx2+o(1) as xaxa-ooo (-oo<x3<oo) 3 (1.11)

in which the positive constant k is the amount of the applied shear.
Moreover, the deformed faces of the crack are taken to remain free of
actual tractions. In view of (1.10), this assumption yields the boundary
conditions

oiz(xl,o:h,x3)=0 (-c<x1<c, -0< x,<m) (1.12)

3

for the components oij of the nominal stress field. If R is understood
to be the particular domain just defined, the crack problem to be con-
sidered accordingly consists in finding a deformation (1. 1) obeying the
incompressibility condition (1.3), as well as a hydrostatic pressure field, ~
such that the displacements satisfy (1.11), while the associated nominal
stress field (1.9) satisfies the equilibrium equation (1.7) and meets the
boundary conditions (1.12).

At this stage we restrict ourselves to the class of incompressible
elastic solids for which W is independent of the second deformation
invariant and set

W=W(1,) forall I;23, W(3)=0 . (1.13)3

1Th.is loading case is known as '"Mode III'" in the terminology of fracture
mechanics.

2La,tin and Greek subscripts have the ranges (1,2,3) and (1, 2),respectively.
Summation over repeated subscripts is taken for granted.

3It is easily seen from (1.4), (1.5) that Il=3 at the undeformed state and
that otherwise Il>3.
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Such a solid has a shear modulus at infinitesimal deformations given by

§
; X u=2W13) (1.14)!
L 1
| and conforms to the Baker-Ericksen inequality, provided
W'(Il)>0 for L,>3 . (1.15)
In particular, for a NeoHookean material,
=Ko
W(Il) = 2(11 < I (1.16)
For materials governed by the strain-energy density (1. 13) the
foregoing crack problem is consistent with the assumption that the ensuing
deformation throughout R is one of anti-plane shear parallel to the faces
of the crack:
ua=0 . u3=u(x1,x2) on R . (1.17)
Indeed, as shown in [2], (1.17) enables one to reduce the original three-
T dimensional problem to the following subsidiary two-dimensional boundary
value problem for the unknown out-of-plane displacement u on the cross-
sectional domain 8: [
[W'(I)u ] =0 on $ (1.18)% {
1,07, @ : A 1
:
with i
2 2 ’
L=3+|val®, |val®=a o (1.19)

1Here and in what follows W'(Il) stands for the derivative of W with
respect to its argument Il'

_ 2Subscripts preceded by a comma indicate partial differentiation with respect
' to the corresponding material cartesian coordinate.




u(xl,x2)=kx2+o(l) as xaxa-om . (1. 20)
u,z(xl,Od:)=0 (-c<xl<c) £ (1.21)

The hydrostatic pressure p= ZW'(Il) on 8 in the present instance and
(1.17), (1.13) together with (1.8), (1.9) yield the stress-displacement

relations

e i o) ] /
T =T A= -cch-ZW(Il)u’ar . (1.22)

3¢ a3 3o

2
il . rly ks 4
Top=Oap=033=0 s T33=2W (Il)lvul ; (1.23)

with Il supplied by (1.19).

We now specify the smoothness demanded of the solution u to the
boundary-value problem characterized by (1.18), (1.19), (1.20), (1.21).
In this connection we suppose that W has a continuous first derivative
and at least a piecewise continuous second derivative on its interval of
definition [3, ®). Further, we restrict u to be continuous and to possess
. piecewise continuous first and second partial derivatives on §; in addition,
u is to be bounded on every finite sub-domain of 8. Thus, in particular,
u must remain bounded within any circle of finite radius centered at
either crack-tip. Next, the limits Vu(xl, 0x) are to exist and be continuous
for -c<x<c. Observe that the preceding smoothness restrictions allow
for the possibility of finite jump discontinuities in Vu — and hence also in the
stresses T3; ~ across curves in 8. If o is such a curve, however, we

stipulate that W'(Il)au/an be continuous across o/, provided n is the

unit normal vector of # and 8u/8n=Vu-5. Let s=0n, so that s is

the nominal traction vector along #. One draws from (1.22), (1.23) that

PRI




i o WL / au
sa-—O . s3-s-2W (Il)-rn on o/ . (1.24)

The foregoing continuity condition therefore assures the continuity of

the Piola tractions across the cylindrical surface whose trace upon #

is o, Consequentlyl, the Cauchy tractions are continuous across the

deformation image of this surface. The continuity of both the nominal

and the actual tractions, in turn, is a necessary equilibrium requirement.
If the boundary conditions (1.21) are deleted and 8 is momentarily

taken to be the entire (xl,xz)-plane, i,e. in the absence of a crack, the

differential equation (1. 18), subject to the condition (1.20) at infinity,

clearly admits the elementary solution
u(xl,xz) =k.x2 for all (xl,xz)Gﬁ R (1.25)

which corresponds to an undisturbed homogeneous field of simple shear

of amount k. Also, (1.22), (1.23) now furnish
2
T23=T32=T(k) =2W/B +k )k, T, =T(k)k (0sk<oo) , (1.26)

while all remaining components of actual stress vanish identically. We
shall henceforth refer to the graph of T(k) (0<k<m) as the response
curve in simple shear. For the special case of the Neo-Hookean solid,
with the strain-energy density (1.16), T(k)=pk and this response curve
is a straight line. Bearing (1.13) and (1.25) in mind one sees at once that
the response curve in simple shear, in turn, completely determines the
strain-energy density for an incompressible elastic solid of the type

under consideration:

lSee the remarks following (1. 10),




=8s

"/Il- 3

W(Il) =IT(k)dk (3=I
0

<o) . (1.27)

1

Finally, we observe in connection with (1.26) that the Baker-Ericksen
inequality (1.15) is equivalent to the obvious physical requirement that
the "'modulus of shear' 2W’(3+k2) be positive at all values of k.

When (1.15) is in force, one confirms readily that the quasilinear
second-order partial differential equation (1. 18) is elliptic at a solution

u and at a point (xl,xz) if and only if

WB+KA) +2°W B +K5)>0, k= [Valx;,x,)| (1.28)

On the other hand, as is clear from (1.26), this inequality is satisfied

if and only if T/(k)>0, so that the response curve in simplk shear has
a positive slope at an amount of shear equal to the magnitude of the local
displacement gradient Vu(xl,xz). It follows that (1. 18) cannot admit a
loss of ellipticity if the response curve in siniple shear represents a
strictly increasing functionl.

We conclude this section with two examples of incompressible

elastic solids within the class of such solids subsumed in (1.13). The

first of these concerns the subclass of ""power-law materials'' introduced

in [2], which is governed by the elastic potential

W(Il)z-zib{[1+§(11-3)]n-1j (3siewm} , (1.29)

where u, n, and b are positive material constants. In view of (1.26),

1 lI.f such is the case, we shall — in the present context — call the elastic
solid an '"elliptic material''.
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<12
the response curve in simple shear here is characterized by

n-1
'r(k):p,]il+;bkz] k. in elsin) - (1.30)

u being the shear modulus at infinitesimal deformations. Figure 2
illustrates the response in shear for various values of the ""hardening
parameter' n. A power-law material hardens or softens in simple shear
according as n>1 or n<1l. The case n=1 corresponds to the special

case of the Neo-Hookean solid. For n=1/2, T(k) is monotone strictly

increasing; further, if n>1/2, T(k)»c as k-oo, while T(k) tends to the
finite "ultimate shear stress' W/J2b as k-oo if n=1/2. On the other
hand, in the range 0<n<1/2, T(k) rises steadily to a maximum at
k=k0=m) and thereafter decreases steadily to zero as k—oo.
Thus, all solutions of the displacement equation of equilibrium (1. 18)
are bound to be elliptic everywhere when n=z 1/2. In contrast, when
n<1/2, a solution of (1.18) that involves displacement gradients of a
magnitude exceeding ko at some point entails a local loss of ellipticity.
The transition case n=1/2 is evidently the limiting elliptic case.

We turn finally to a second, much more specialized, ideal incom-
pressible elastic solid that serves as a basis of the present pilot study.

The elastic potential defining this material is given by

TR
W(I,)=51,-3) (B=<I;<4) ,
(1.31)
Wity = - ez - @sicw)

in which the positive constant u is again the shear modulus at infinitesimal

deformations. The corresponding response in simple shear obeys
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-1/2

T(k) =uk (0sk<1), T(k)=pk (1sk<om) . (1.32)

Figure 3 displays the graph associated with (1.32). Note that the response
in the present instance is linear (Neo-Hookean) up to a shear of amount
k=1, whereas T(k) is monotone decreasing for 1<k<o and T(k)=0

as k—oo. Clearly, the location of the peak of the response curve at k=1
is a matter of convenience onlyl. Equation (1. 18) at present suffers a
loss of ellipticity at a solution u and a point (xl,xz) if IVu(xl,xZ) | >1.
Observe that while the elastic potential (1.29) has continuous derivatives
of all orders, W in (1.31) is merely once continuously differentiable on
its interval of definition [3, o); the second derivative of this elastic

potential has a finite jump discontinuity at I,=4.

2. The small-scale nonlinear crack problem. Hodograph transformation.

Upon a linearization with respect to |Vu|, the differential equation
(1. 18) reduces to Laplace's equation and (1.22), (1.23) pass over into the
stress-displacement relations appropriate to infinitesimal anti-plane
shear deformations. The boundary-value problem for u governed by
(1.18), (1.20), (1.21) under such a linearization becomes identical with
that characterizing the analogous crack problem in linear elastostatics.
This linear boundary-value problem, in turn, is mathematically identical
with the one governing the velocity potential of a steady irrotational flow
of an inviscid incompressible fluid past a flat plate of width 2c at a right
angle of attach.

If (r,0) are polar coordinates at the right-hand crack-tip (see

lThe case in which this peak occurs at k=k, (k.>0) is reducible to the
case ko= 1 by means of an obvious re-scaling.
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Figure 1) the asymptotic behavior, as r-0, of the displacement u and of
the shear stresses '?'30 belonging to the well-known solution of the linearized

crack problem is given by

t'1~k(2cr)1/zsin % -

o o -1/2 .
'r3l=pu' =~ -uke(2cr) / sm% , >(2.1)1
|
k2 oh |

'?'32= p&’ 2~p.kc(2cr)-1 cos 3
J

The normal stress '?'33 vanishes identically according to the linear theory.
For our purposes it is essential to remark that for the Neo-Hookean

elastic potential (1. 16) the non-linear crack problem (1.18)-(1. 21) specializes

exactly (rather than merely by linearization) to the linear problem of which

u is the solution. Further, for the Neo-Hookean material T3o: coincides

with '7’30[, but Tz3 NOW no longer vanishes. In fact, for this special

material one finds from (1.23) and (2. 1) that

2 kzc
T33=u|Vu| ~*i——2r as r-0 . (2.2)

According to (2.1), the stresses ‘?'301 — and hence also the correspond-

ing infinitesimal shearing strains — become unbounded as r-0. Consequently

the solution of the crack problem based on linear elastostatics cannot be
valid arbitrarily close to the crack-tips. It is plausible to assume, however,

that for a small enough amount of shear k at infinity, the asymptotic

ISee, for example, I.N. Sneddon and M. Lowengrub [3], Section 2.6. Note
‘ that the right member in the first of (2.1) is an exact solution of Laplace's
¥ equation that has a vanishing normal derivative along r>0, @8==*m.
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estimates (2.1) are realistic within a suitably small circular annulus

centered at the right crack-tip (see Figure 4). On the other hand, the
deformations and stresses in the interior of the circular disk surrounded |
by this annulus — except possibly at the tip of the crack, where they may
not be defined — are governed by the finite theory and must match the
near field predicted by (2.1) as the inner boundary of the annulus is
traversed. A magnification of this local state of affairs, which in the
context of plasticity theory1 is known as '"small-scale yielding', leads 4
to the following global boundary-value problem for the domain T (see |
Figure 4) comprising all points exterior to the half-axis -o<xy <0,

Xy= 0, which may now be regarded as representing a crack of semi-infinite

width. If (r,9) are at present polar coordinates at the origin, so that

x1=rcose 5 x2=rsine (0sr<oo, -m<H<m) , (2.3)

the ensuing '"small-scale nonlinear crack problem'' consists in finding
a solution of the partial differential equation (1.18) on 3, subject to

the boundary conditions

u, 2(xl,O:l:)=0 (-oo<x1<0) (2. 4)

and the matching conditions

N
u~k(2cr)l/zsin% ’
u 1~-kc(2cr)-llzsin% yu 2~kc(2cr)-1/2cos % ?(2. 5)

as r—=o (-w<o<w) .

A 1

See Rice [4].
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Furthermore, the desired solution u is to satisfy relaxed regularity
requirements strictly analogous to those imposed in connection with the
original nonlinear crack probleml.

When referred to the dimensionless variables
% =x /ck’, F=r/ck’, Ewnleks (2.6)

the boundar;-value problem (1.18), (2.4), (2.5) assumes the following

non-dimensional form in which k does not appear explicitly:

[wi3+[7a]%3 ] =0 on ¥ @.n
» ’a
T L), 04)=0  (-0<F<0) ; (2.8)
N
i G'~(2I-')1/zsin-g ;
— 1~(z¥)'”2s'm% e 2~(z‘£)'”2cos% (2. 9)
as r—=o (-w<p<mw)

.

The foregoing small-scale nonlinear crack problem was solved
in [2] by means of the hodograph method for the limiting elliptic case
n=1/2 of a power-law material with the elastic potential given by (1.29).
Reverting to the general class of incompressible elastic materials governed
by W=W(Il), we merely sketch here a formal approach to the problem

based on the hodograph method and refer to [2] for a detailed exposition

lSee the regularity conditions listed after (1.23).

2Subscripts preceded by a comma are now understood to indicate partial
differentiation with respect to the dimensionless material coordinates X

1 and V stands for the gradient operator with the components 8/8§a WA




of this scheme.

The underlying hodograph transformation is the mapping

§d=ﬁ,aﬁl,§2) for all ﬁl,iz)e’ﬁ (2.10)

from the physical (T:l,:':z)-plane into the hodograph plane spanned by the
rectangular cartesian coordinates (El, 52). We shall limit our attention
temporarily to a material satisfying the ellipticity condition T (K)>0

(0 < k< o). Further, we take for granted that (2.10) is a one-to-one
continuously differentiable mapping of ¥ onto its as yet undetermined
image A in the hodograph plane. The latter assumption entitles us to
introduce, in place of U, its Legendre transform U as a new dependent

variable:
T(§1,6,) =%l (%), %) -UX,, X,) =HpB -0, %) - (2.11)

From (2.10), (2.11) follow

% -ggﬁ(gl,gz) on A , (2. 12)
ml.i2>=§p%§—pﬁ(;l.§z)-t‘J(gl.;Z) on A . (2.13)

Conditions (2.8), (2.9), together with the anticipated unboundedness
of |V'6| as T~o, suggest that A is the upper half-plane €Z>0, with
5-2 as F-0 and vice-versa. Also, if (p,¢) are polar coordinates

in the closure of this half-plane, so that

§1=pcoscp ’ §2=p singp (0sp<o, Osps<mw) , (2. 14)

one draws from (2. 10) that




p=+E E_ =|Va@| . (2.15)

o o

Under the transformations (2.10), (2.11) the nonlinear boundary-
value problem for @ on ¥ becomes a linear one for U on A, which—

as shown in [2] — admits the explicit solution

T(g,,8,) =pP(p) cosp (0<p<oo, 0spsm) , (2.16)
where
@ @
P(D)=%£ t3W:;+t2):u£t2‘.i:(t) (0<p<m) . (2.17)1
On setting
Q(p)= -pP’(p) (0<p<o) , (2.18)

one infers from (2.16), (2.12), in view of (2.3), (2.6), and (2. 14), that

> N
X,=Tcos 6=P(p)-Qp)cos™p ,
%,=Fsinf =-Q(p) sinpcosgp > (2.19)
(0<p<m, Ospsm)
)

It can be shown2 that for an elliptic material, equations (2. 19) are

invertible: for each >0 and each 0 in the interval [-11,17] there exist

unique values p=p(r, ) and o=¢(F,08), with p>0 and o in [o,n],

lThe convergence of the improper integral is assured by the ellipticity
condition T’>0 on [0,™).

2A proof of this is sketched in [2] merely for the limiting elliptic power-
law material.
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such that (2.19) hold. Once p(T,0) and (T, 8) are known, the desired

solution for EGEI,EZ) in the physical domain follows from (2. 13) with
the aid of (2.14), (2.16), and (2.3). In this manner, bearing (2.18) in

mind, one arrives at
U(x,,%,) = -pQ(p) cosp (0<T<oo, -m<p<m) . (2.20)

Further, one can verify a posteriori that this algorithm indeed produces
a solution of the boundary-value problem (2.7), (2.8), (2.9) with the
requisite regularity properties. In the elliptic case considered so far,
U so determined has continuous partial derivatives of all orders on the
entire open region ¥. The stresses associated with U are obtainable

from (1.22), (1.23).

3. Elliptic and hyperbolic solutions of the displacement equation of

equilibrium for the special material. 14

Wtih a view toward exploring the effect of a breakdown of ellipticity
on the solution to the small-scale nonlinear crack problem, we turn now to
the special '""pilot material' introduced in (1.31), whose response to a
simple shear is governed by (1.32). When the ellipticity of the required
solution field is not guaranteed in advance, the hodograph mapping (2. 10)
may not be one-to-one and (2. 19) need no longer be uniquely invertible.

As will be shown, however, even in these circumstances (2. 16) to (2. 20)

may be used to generate solutions of the partial differential equation (2.7)
on certain subdomains of §. These solutions, in turn, may be combined to
construct a solution of restricted smoothness to the global boundary-value
problem at hand.

The particular choice of the pilot material determined by the
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simple-shear response (1.32) was motivated in part by the fact that the
integral in (2. 17) may be evaluated explicitly for this special incompressible

elastic solid. Indeed, (1.32), (2.17),(2.18) give

P(p)=—15 +3 (0<p<1), P(p)=7"-_ (1sp<w) ,
2p P 3.1)
1 1
Q(p)=— (0<p<l), Qlp)=== (l<p<o)
% vo
Equations (2. 19) may be rewritten as
?:l:?cose:a(p)-b(p)cosch s
(3.2)
':EZ:T'sine:-b(p)sianp (0<p<o, O<p<m)
with
a(p)=P(p) - 3Q0) , b(p) = 3QAp) - (3.3)

Thus, regardless of the specific choice of the material, the points ﬁl,:_:z)
in the physical plane that correspond to a constant positive value of p

comprise the circle
Tlo) & [%,-a(p)] %+ %5 = %) (3.4)

which is centered at (a(p),0) and has b(p) as its radius.

Returning to the pilot material and confining our attention to

0<p<1 for the time being, we note that (3.1) to (3.4) yield a(p)=3/2,

blp)=1/26° and

G
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N
Pt SR e
X-3=- —-2 5 COS 20 , X,= -Z—Zsmch (0<p<l1, O<sgpsm) ,
P P
, (3.
= 32, 2 ]
T(p) : (X,- 3) +x2-—4 3 (0<p<1)
P
S
Consequently, if (?1, Bl) are polar coordinates at ?:1=3/2 . 7:2:0
(see Figure 5(a)), so that
%,=Fcos §=2+F, cos 0
1 2 1 | (i
(3.
§2='1—'sin6=?1 sinel (Os?l<oo, -wsel<-n') 3
one has from (3.5),
= =11 /2 1
p=(27)) i p=5(8,+m) . (3.
Further, (3.1), (3.7), (2.20) and 0<p<1 now give
i i T e
u=e(1—:1,x2)=(2r1) sin—z- on & , (3.
where € is the subdomain of ¥ defined by
e={F,0)|3<F, <0, -n<p, <] (3.
and indicated in Figure 5(a). As p-1 in the last of (3.5), I'(p) tends
to the circle
32 o2 1 T
c'ﬁl°§) +x2-4 or r;=3, -nsel<1r . (3.
The boundary of € thus consists of C and the half-line -oo<':':l< 1
X,= 0.
Since the partial differential equation (2.7) reduces to Laplace's

R ,}.'
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equation for the pilot material in case p<1, the displacement (3.8)
evidently satisfies the appropriate specialized version of (2.7) on €.

Moreover, from (3.8),(3.9) follows

1/2

|'v‘a1=|ve|=p=(zi-'1)‘ <V on & , (3.11)
whence the solution (3.8) is elliptic throughout the open region ¢&. ) ’

Clearly, |Ve|-1 as a pointon C is approached. It is essential to

observe that the elliptic solution e is discontinuous across the half-axis

-0<x,<1, 322= 0, rather than merely across the semi-infinite crack

1

-oo<3':1<0, §2=0. In fact, as is apparent from (2.6), (2.1) and the

remarks following (2.1), the solution under discussion coincides with

the near field of the out-of-plane displacement for a Neo-Hookean material

and a crack tip situated at ?1= 0, rather than at the origin r=0.
We proceed now to the case p>1. In this instance (3.1) to (3.4)

furnish a(p)=3/2/p, blp)=1/2/p

x1='f cos 9 = ¢(3 - cos 2p) ,
P

§2=?sine= -#asianp (l<p<w, O<p<m) , > (3.12)
yNE 2 g
T(p) :(xl-?p_> +x2=zs (l<p<oo) 1

Upon referring the last of (3. 12) to the polar coordinates (r, §) and

solving the resulting quadratic equation in Jo , one is led to

JE=ZL_r[3coseiR(e)] ; (3.13)




provided

R(9) = J/9 cosze -8 . (3. 14)

On the other hand, (3.13), (3.14) and the first two of (3. 12), after some

algebraic manipulations, are found to imply

-
-~2,/2 sin §

cosgp=

[1+43 sinZBiR(e)cos 6]1/2

5 (3.15)
. cos A= R(9)

sing =

J2[1+43 sinzei'R(e) cos 0] 172

J

Clearly, both values of Jp supplied by (3.13) are real and positive

if and only if
|cose|S 8/9 or -9056590, 90=cos—l(~/§/3) . (3.16)
Further, since p>1 at present, (3.13) demands that
3cos = R(9)>2T . (3.17)
+ -
Now let ¥ and ¥ be the two subdomains of ¥ defined by

+
¥ ={(F,0)|0<F<3[3cos g +R(s)] , 0= 0|<gy) ,
(3.18)

¥ ={(, 0|0<F<3[3cos0-R(0)] , 0<|ol<py} ,

which are shown in Figure 5(b) and Figure 5(c), respectively, and which

evidently conform to (3.16), as well as to the ineguality (3. 17) with the

1The reason for excluding points on the ray =0 from N will emerge
presently.
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appropriate sign alternative.

For the purpose of examining the geometry of the two open point sets
; and R-( we note first that I’(p) in the last of (3.12), as p—~1, tends
to circle C given by (3.10). Next, let E and é be the two complementary

circular arcs of C defined by
E-{F,,0)IF,=2, 0<|e,|=0,+2]
j e | 15 2 1 DiESZ2stt

(3.19)
E={F,0)[F,=3, 6g+3<loylsnl , J

and observe on the basis of (3.6), (3.14), (3.16) that these two arcs may

also be described by

-{F 0= 13cos8+R(0)] , 0|0l <8y}
\ (3. 20)

C={(F, 0)|F=3[3cos8-R(0)] , 0= |0]<0,]

J
It is clear from (3.18), (3.20) that the boundary of J:(- consists of the two
ray-segments Os?sﬁ, e::i:eo together with the circular arc (-l‘:, as
indicated in Figure 5(b); in contrast, the boundary of W - displayed in
Figure 5(c) — is now seen to be composed of the same two ray-segments,

the circular arc é, as well as the segment 0<sT<1, §=0 of the

il-a.xis.

Recalling from (3. 1) that Q(p) = 1/2/p when p>1 and substituting

from (3.13) and the first of (3. 15) into (2. 20), we arrive at the two out-

of-plane displacement fields:




St %)= [3cos 0+R(0))*/%sing & |
72 mileos 0+ R(0)]112
L (3.21)
L T v
=h(x,,%,)= on ¥
" 1’72 ﬁ?[cosG-R(e)]ﬂZ J

with R(g) given by (3.14). Both ﬁ and h are real-valued functions that
have continuous partial derivatives of all orders on their respective domains
of definition; further, each satisfies the displacement-equation of equili-
brium (2.7), specialized for the pilot material and p>1, as is readily
verified by substitution. Also, a direct computation confirms — in agree-

ment with (2. 15) and (3. 13) — that

S
= —+ +
5| = |7h| = 25[3cos 6+ R(8)]1%>1 on ¥ ,

4T

\(3.22)

— o 1 2 -
|Vu|=|Vh|=—2[3cose-R(e)] =1 on ¥ , J

4r

+ -
so that h and h are both hyperbolic solutions throughout the open sets

+ = =

¥ and ¥, respectively. From (3.22) and (3.20) one infers that |Vh| -1
1 +

as a point on the boundary-segment C of ¥ is approached; similarly,

|[Vh| =1 at every point of the circular arc C.

Finally, (3. 14) and the second of (3.21) reveal that
- i At l_ pray
h(xl,O:t)_:t_il (0<x1<1) A (3.23)

Consequently, the second of the foregoing two hyperbolic solutions has a

finite jump discontinuity across the segment 0<:_:1<l of the El—axis.




Construction of a solution to the small-scale nonlinear crack problem

for the pilot material.

In this section we attempt to piece together the solutions of the
partial differential equation (2.7) established in Section 3 in order to con-
struct a solution — continuous and piecewise smooth on T — of the small-
scale nonlinear crack problem (2.7), (2.8), (2.9) for the pilot material.

To this end we note first that we have available only the elliptic
solution e on the complement of ?j; with respect to the cut plane T and
only the hyperbolic solution lt in the interior of the circle C (see Figure 5).
Further, as is easily seen from (3.8), (3.21) and (3.6), (3.14), both e 1
and Ve join continuously with ;1 and Vl.t across the circular arc é
separating the elliptic domain € and the hyperbolic domain ; Thus e
and it supply a solution of the requisite smoothness to the differential
equation (2.7) at all points of Y that lie outside the boundary of ¥.

Since i‘; is the only one of the three solutions available on ¥ that
is continuous across the segment 0<:_cl<1 of the ':El.-a.xis, it follows
that the solution to the boundary-value problem (2.7), (2. 8), (2.9) we
are trying to assemble must coincide with l-t in the vicinity of this seg-
ment. On the other hand, the transition from {1 to e across the ray-
segments 0<T<,2, p=% 8o is readily found to involve a jump discontinuity
in u.

The foregoing considerations suggest that we dismiss h altogether
and seek to ""match" .l'; and e across two as yet undetermined curves
# and #’ (Figure 6) that are symmetrically situated with respect to the
El—axis, start at the origin, terminate at the points T = Je ., 8 =+0,, and

otherwise lie wholly in %. This matching, moreover, must assure the
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continuity of U and of the traction across the two curves to be found. As
will emerge shortly, there exist unique "shocks' (shock-lines) o and o’
with the desired properties; as either of these lines is traversed u and its
tangential derivative remain continuous, while the normal derivative of

u suffers a finite jump discontinuity — despite the prevailing traction con-
tinuity across o and ',

The final solution of the small-scale yielding problem thus obtained
coincides with the hyperbolic solution ;.1 on the finite domain ¥, whose
boundary is the closed curve composed of &, #’, and é (see Figure 6);
it coincides with the elliptic solution e on the domain €, consisting of

all points of ¥ exterior to the boundary of R’p. Since T.~T and 91~9

1
as T-oo, itis clear from (3.8) that the composite solution just described
satisfies the conditions (2. 9) at infinity, in addition to the boundary con-
ditions (2.8), which are obviously met. While the solution here alluded to
clearly possesses the required (relaxed) smoothness on '5, we shall have
to show eventually that U so determined remains bounded as T -0.
We proceed now to the determination of the upper shock o/, from

which o’ follows by symmetry. Since the hypevrbolic solution h has been
discarded, we shall henceforth write h in place of it According to (3. 8)

and (3.21), the two solutions of (2.7) to be matched across the desired

curve o are:

/2

Tx'ze(?:l,iz)=(2?1)l sinTI on 2,

> (4. 1)

+
’6=h(7:1,3':2)=£(_;_.el on ¥ ,

B o]

H
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32,
f(g)= L [3cos8+R(O)" "sing  po)-9coslg-8 . (4.2)

J2 FecabiRIBI] S

The continuity of the displacement u across o therefore demands that

5 A
1/Zsi.n—l-=-g-$-_r§l on o , (4.3)

in which ?l and 91' on account of (3.6), may be regarded as functions

of T and §. We shall show that (4. 3) actually admits a unique solution
#:T=%(6) (0s0sxp,), #(0)=0,%(g)) =42 (4.4)

and that the emerging shock # meets all the conditions stated earlier.
With a view toward proving this claim, we temporarily take for
granted the existence of a solution (4.4) to (4.3) and infer, with the aid

of (3.6), that then necessarily

6 a2.2

$#04in2g - 286°F2(a)cos 0+ 38%%(a) - £1(a) =0. . (4.5)

Next, we introduce the auxiliary function

C=C(9)=gc—o'sﬂe%m (0<p8=<8y) (4.6)

and use (4.2) to conclude, after lengthy elementary manipulations, that

(4.5) may now be written as

2
1.2 .4, .3, 3.2 sin 0

(=35 1€ +C+30 =(4C+1)

? { s [cos 8 +R(p)

]2}=o ! (4.7)

But (4.6) and (3.20) imply that the first factor in (4.7) vanishes if and only




if T=%(0) and @ are the polar coordinates of a point on the circular

arc (t, and hence this factor cannot vanish on . The presence of the
+

root (=1/2 of (4.7) merely reflects the continuity of U across C

mentioned previously. It follows that the function within braces in (4.7)

must vanish on o, so that

¢t O+ 3

$0)= —

il
sin 0 A%
= = §(0)
[cos 0 +R(0)]°
(4. 8)

(059seo) - on o .

The function | appearing in (4.8) is strictly increasing on [o, 90], with
y(0) =0 and wb(eo) =1/8, whereas the rational function ¢ on the left
side of this equation is easily seen to increase steadily from ¢(0)=0

to ¢(1/2)=1/8 as ( ranges over the interval [0,1/2]. Consequently,

for each given 9 in [0, 90] there exists precisely one root (=((8) of 1
1 (4.8). If we now employ (4. 6) to define ¥(p) and reverse the steps that

led from (4.3) to (4.8), we infer the existence and uniqueness of the shock

o described by (4.4).

Although (4. 8) has not been solved explicitly for (=((6), the
numerical calculation of #(g) (0<@s eo) from (4.8), (4.6) presents no
difficulties. The results of this computation are plotted in Figure 6.

Further, equations (4.8), (4.6) enable one to extract the asymptotic

behavior of the shock o near its endpoints. One finds in this manner that

1 f(e)~Ji3_sine a8 G=0 ,
(4.9)

?(6)~~/z-25/4(90- 9)1/2 as 6-0, -




As is easily verified, (4.9) assures that o/ is tangential to the Il-a.xis
at the origin and tangential to the circle C at F=.,2, 0= 8o-
Our next objective is to establish the continuity of the tractions

across the shock /. In this connection we rely on (1.24), (1.19), and

] (2.6) to see that the only non-vanishing nominal traction component along

i o is given by
=_2, 90
s=s,=2W'(3+ |va| ) Bn | (4.10)

where U=e on the elliptic side of o, while TW=h on the hyperbolic side.
Denoting the scalar traction s on the two sides of o by Se and Spe

respectively, we draw from (4. 10) and (1. 26), (1.32) that

t de i malEgy
so=Hgy » sp=u|Vh| = - (4.11)

Accordingly, the tractions are continuous across o if and only if

| 8,,"8,=0 or {|$h|-3/2$h--v-e}°2=0 on o , (4.12)

provided n is a unit normal vector of o/ and the dot signifies scalar

multiplication. Keeping in mind that the displacement-continuity condition

(4.3), which determined the shock o/, asserts

h-e=0 on o , (4.13)

one has

vh-ve

—— on o ., 4, 14)
th-Vel 5 (

n=
~

The traction-continuity condition (4. 12) is therefore equivalent to

—
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¥n) /%4 Ve |2- {1+ |7n|"*/%Fn-Fe=0 on » . (4. 15)

Aiming at a verification of (4.15), we first record the polar com-

ponents of Vh, which follow from the second of (4.1):

8h _ 1 lén 1 1
;e LC R 1 -?Zf(m \ (4.16)

Similarly, the first of (4.1), in conjunction with (3.6), enables one to

arrive at

8 8
IR T 1 18e 1 i |
ﬁ'ﬁ?‘lsm(e"i_) ' T8 - 2?1°°S(9- z) - e 10
Equations (4. 16), (4.17) reduce (4. 15) to
1 1¢ 2 °2 1/4
1 wdp 2 2. S
- —=——11+T [£(0) +£°(0)] F(6)=0 on o , (4.18)
my J
with
9 9
F(8) = {(8)cos(6 -1 )- (0)sin(p - 5L ) . (4.19)

Now, (3.6) and (4. 3) justify

.

e
£7(8)sin 8, ]1/3 - =[ £(0)sin 8 ]2/3 v
2sin esinz(el/Z) 1 JZsin(s /2)sin g

1Her.-e and in what follows f{ stands for the derivative of 4
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Finally, substitution from (4. 20) into (4. 18) and subsequent use of the
definition (4.2) of £(§), after a lengthy computation, confirm that (4. 18)
is indeed satisfied. This completes the verification of the traction-con-
tinuity requirement (4.12).

We have yet to show that the solution @ constructed in this section
remains bounded as T—-0. According to the first of (4.1), the restriction
of e to the final elliptic domain €, (Figure 6) clearly meets this condition.
It therefore suffices to prove that the hyperbolic solution h is bounded on
the point-set € consisting of all points (¥, 8) with ¥>0, 620 that belong
either to ¥, or to o/. Note that ¢ is the closure of the upper half of
the final hyperbolic domain ¥, , with the exception of the origin.

Since o/ is tangential to the ?c'l-a.xis at the originl, it follows that
every ray from this point to a point in # intersects o/ precisely once,

whence
T=%(8) for all (F,0) in @ . (4.21)

We recall next that ((8) in (4.8) has the range [0,1/2], so that

2 sin 6
g(e)=, 3 cos 6+ R(9) (0s6< 8o) (4.22)
and (4. 6) yields the lower bound
£(8)> . §[3°°°°+R(°’]sine (0<8<8,) (4. 23)
[cos6+R(8)]

But (4.21) and the second of (4. 1) give

lRefer to the first of (4.9).




— . _£(8)_£(8
h(:_:l,xz)- =< (©) on &

= - (4. 24)

while this inequality, together with (4.23) and (4.2),leads to

h(%,,%,) s 525{[3cos6+R(6)][co§9+R(e)]}1/zsJE on ¢ . (4.25)

This establishes the required boundedness of h, and thus of ©,as T-0.
In contrast, Va fails to remain bounded as the origin is approached

from within ¥, as is apparent from the first of (3.22), which gives

— 4 e
|Vuﬁl,0)\~_—2 as xl-°0+ % ‘ (4. 26)
X
1
One shows easily that |-5Ti| -0 as T-0 along any regular arc lying in ¥,

or along . In addition, it should be pointed out that (4. 1) furnishes

ﬁ'(3‘:1,01)==t./2?1 (-oo<:_:l<0), ﬁ(:‘cl,O):o (0<§1<oo) . (4. 27)

which reveal a displacement discontinuity at the origin.

There is one further requirement that has been proposed for
elastostatic fields with discontinuous deformation gradients which has not
been mentioned so far in the present paper. This condition insures the
dissipative character of the shocks inherent in such a field and is an
analogue of the entropy inequality for gas-dynamical shocks.

The elastostatic inequality to which we are alluding was first
deduced in [5] with limitation to rectilinear shocks in piecewise homogeneous
plane deformations; it was later extended to curved shocks and general
non-homogeneous deformations in [6], where the special form assumed by

this condition in the particular case of anti-plane shear was given separate

VR AR B,
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attentionl. A thermodynamic argument in support of the dissipation
condition for compressible elastic materials is produced at the end of [6].
The application to the solution field under consideration of the
dissipation inequality referred to above is contingent upon a quasi-static
interpretation of this field, in which the amount of shear k applied at
infinity plays the role of 'time' — or, more appropriately, of a history
paraxneterz. In this connection the corresponding velocity Y’(zs, k) of
a point x on the instantaneous shock (k) relative to the undeformed
configuration is of importance3 .
In view of (4.4) and (2.6), the physical position vector of a point

on (k) is given by
x=%(6,k) = ck®#(0)a(6) (0<0<8,) , (4.28)

if 3(6) is the radial unit base vector associated with the polar coordinates

(r,8). Hence

Vix k)= 2-%(0, k)= £&(6,k) (0<8<86) .  (4.29)

It follows from (4. 28), (4.29) and properties of the function t established
earlier that V(x, k) always points into the hyperbolic domain ¥, so that —
as k increases — material points of the body traverse the shock #/(k) from

the hyperbolic '"upstream'' to the elliptic '"downstream'' side of o/(k). The

TSee Section 6 of [6].

2Thus as '"time" k increases, the body undergoes loading, rather than
unloading.

3By virtue of the symmetry of the solution W at hand we may confine the
following considerations to the upper shock.
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relevant dissipation inequalityl now takes the form of the jump condition
[H]*'s0 on » , (4.30)
in which the function within brackets is defined by
2 ‘ 2.(8u)\° 2
H=-W(3+|vu|“)+2W 3+ | vu| )(ﬁ) (4.31)

and [H]t stands for the difference between the limiting value cf H on
the upstream (or positive) side of o and its limiting value on the downstream
(or negative) side. On account of (4.31), (4.10), (2.6), and the continuity

of the tractions across o/, we arrive at
+ + out -2
[H]_=-[W]_+sf-55] on #, W=W(3+|vu|“) . (4.32)

Recalling that W=h on the upstream side, while W=e on the
downstream side of o/, we now express the right-hand member in the first
of (4.32) in terms of Vh and Ve. To this end we first invoke (1.31),

(1.19), and (2.6), which give

| [w]f:%{4\€h\l/2-3-\€e\2} ; (4.33)

whereas (4.11) and the first of (4. 12) enable us to write
Y e pedfRe e
sl_a—n:l =u|vh| vh-g(vh-B-Ve-g) & (4. 34)

Furthermore, another appeal to (4.11), (4.12) yields

lsee (4.19)and (6. 13) in [6].

2 %
Here 8u/8n=Vu-£ and n is a unit normal vector of o,
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Yeen=|7h| 3/ %Fhen . (4.35)

Using this result in (4.34) and thereafter substituting from (4.33), (4.34)

into (4.32), we are finally led to

2(Vhen
[H]}- L‘{IVeI +3-4[7n| /2 |i T 2[1- |Fn|" 3/21} (4.36)

We turn next to a verification of the dissipation inequality (4.30)

at the endpoints of the shock . Since |Vh|>1, (4.36) implies that

|1/2

[HI's 8{|7e|?-2|7n|'/%43} on # . (4.37)

But according to (3.11) and (3.22), |Ve| is bounded and |Vh|-oo as

T-0. Consequently, (4.30) is certain to hold along # in a neighborhood

of the origin.
The confirmation of (4.30) near the right endpoint of o/, at ?:ﬁ .

6=6 unfortunately turns out to be a very cumbersome task, which

0 ’
requires a considerable improvement of the second estimate in (4.9). The

requisite refinement of this asymptotic result is found to be

1/2 5 -13/4

(6 -0)=-226%2

#0) =z - 2548 - 0) B 811 %

+o{(eo-e)2} as 6.8, , (4.38)

and calculations far too elaborate to be included here eventually yield

[H1?=-33x2"%(s,-8)3/%+0((8,- 0)°) as 0-8, . (4.39)

S e s e ——y
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It is now evident that (4.30) also holds in a neighborhood of the right
endpoint of o. Numerical calculations, which were carried out on the
basis of (4.36), reveal that the dissipation inequality is in fact satisfied
at all points of the shock.

In defining the pilot material through (1.31) we assumed for con-
venience that the peak of the response curve in simple shear (Figure 3)
is situated at k=1. If this normalization is abandoned and the maximum

of t(k) is permitted to occur instead at k= ko (k0>0), (1.32) give way to

-1/2

(k) =uk (0<ksky) , T(k)=nky(k/kg) (ky< k<o) , (4. 40)

while (1.31) undergo an analogous modification in accordance with (1. 27).
It is easily seen that in these circumstances the physical problem governed
by (1.18), (2.4), (2.5) again reduces to the dimensionless version (2.7),

(2.8), (2.9) provided the scaling (2. 6) is replaced by

- it 2 sl B o / 2
X = koxa ck™ , r—kor ck™ , u-kou ck™ . (4.41)
Since the solution to the small-scale nonlinear crack problem
deduced here involves shocks, along which the displacement gradients
suffer jump discontinuities, it is natural to wonder whether it is possible
to prove the non-existence of a smoother solution to this problem. We

have not been able to supply such a proof; nor have we dealth with questions

related to the stability of the solution found.

5. Numerical results for the displacements and stresses. Generalizations

of the constitutive assumption. Discussion.

It is clear from (4. 1) and the subsequent analysis in Section 4 that
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the displacement field of the solution to the pilot problem deduced there

is supplied by

8
T=yZF sin5 on €,, 5= onw, , (5.1)

where £(8) is given by (4.2). Here €, and ¥, are the final elliptic
and hyperbolic domains defined in Section 4 and depicted in Figure 6.
Equations (5. 1) together with the relations (3. 6) between the two pairs of
polar coordinates (?l,el) and (T, 6) may be used to calculate u(r,0).
Figure 7 shows curves displaying the angular dependence of u(r, 6) for
four fixed values of T. Note that the kink in the curves corresponding to
T=1/4 and T=.2/2 is due to the shock. Since the circles ¥=7/4 and
T=9/4 do not intersect the shock, the remaining two curves in Figure 7
are free of any discontinuity in slope.

From (5.1) follows

ﬁ for 0<B=<m
lim G(F, 9) = 0 for 6=0 (5.2)
T-0
-3 for -wr<8<0 ,
which accounts for the dashed line in Figure 7. Thus, in first approximation,
the material above and below the crack, near its tip, translates rigidly
in opposite directions (parallel to the plane of the crack). The displacement
discontinuity at the crack tip inherent in (5.2) was mentioned earlier in
connection with (4. 27).
We proceed now to the determination and discussion of the stresses

associated with the solution under consideration. In view of (1.19), (1.22),

(1.23), the non-trivial components of the prevailing actual stress field,
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referred to the cylindrical coordinates (r,8,z)=(r, 6,x3), are:

B 1, 8\1 = 2, ‘l 8u st ) 2
T W) gE s T, =2WL )T gg s T, 2W (Il)|Vu| s
r(s.a)

I =3+|Vu|2 .

1

/

where W is the elastic potential of the pilot material defined in (1.31).
A direct computation relying on the scaling (2.6), the dimensionless
displacements (5.1), and involving the polar-coordinate relations (3. 6),

ultimately yields the results:

> (5. 4)

1 J

which — together with (3. 6) — determine the cylindrical components of
the Cauchy stress tensor on the elliptic domain €, as functions of T

and 6 alone; similarly,

v, = uEr@[) + @173/ 1

ro,=HEO[E2(0) + #2(@)] /% > (5.5)
2 2 1/4

T~ ELE7(8) +17(8)] on ¥, , j

with £(6) furnished by (4.2).

Figures 8,9, 10 contain graphs depicting the dependence of the stresses
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T T,z UPOD the polar angle 6 for the same four fixed values

rz’ "9z’
of T employed in Figure 7, except that the results for T=9/4 were
omitted in Figure 10 in order to avoid an excessively crowded diagram.
The curves appropriate to T=1/4 and T=,2/2 in the figures under
discussion display finite jump discontinuities at values of 6 that are
angular polar coordinates of the point of intersection of the corresponding
circle T =constant with the shock. In contrast, the graphs based on
T=7/4 reveal merely a discontinuity in slope at the value of 8 that
corresponds to the intersection between the circles C and T=7/4.
At this point of intersection |V@| =1 and the singular behavior just men-
tioned can be traced to the kink in the shear-response curve (Figure 3)
at k=1. This kink is also responsible for a discontinuity in the curvature
of the displa~“ment curve for T=7/4 in Figure 7 at the particular value
of § referred to above. Finally, the curves associated with T=9/4
in Figures 8,9 are entirely smooth since this circle lies wholly in the
domain of ellipticity of the solution.

If the maximum of T(k) occurs at an amount of shear ko , so that
(4. 40) hold and the scaling (4.41) is in force, the graphs in Figures 8,9
/uk

represent 'rrz/uko , and T while those in Figure 10 become

6z 0’

plots of 'rzz/uktz) .

Equations (5.4), (5.5) imply that the shear stresses T Tez
remain bounded as T-0 and tend to zero as the crack-tip is approached
from within the hyperbolic domain ¥, . This conclusion is consistent
with (4.26) and the fact that 1(k)<0 as k-oo in a simple shear defor-

mation of the special material under consideration. On the other hand,

P R . T Ty T
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o m

the axial normal stress s though bounded in any elliptic neighborhood

of the origin T=0, becomes unbounded as T—~0 from within ¥, . This
singular behavior of T,z Was to be anticipated in view of the last of (1.26),
according to which the normal stress T33 induced by a simple shear
remains finite as the amount of shear k grows beyond bounds only if

kt(k) tends to a finite value as k—oo, whereas k'r(l<)~p.lv;1/2 in this

limit for the pilot ma,teriall. The preceding remark suggests that the
singularity of Yo at the crack-tip would not arise if the second of the re-
lations (1.32) defining the material were suitably modified. Unfortunately,
this objective is incompatible with the hodograph scheme we have used to
deduce the solution to the problem at hand since the improper integral in
(2.17) is no longer convergent when kT(k)=0(1) as k-oo.

Keeping in mind that |Vu|<1 on &, and [Vu|>1 on ¥,, one

easily infers from (1.19), (1.23), and (1.31) that

W=2r -3 ongw . (5. 6)

The behavior of the strain-energy density associated with the solution
being discussed is therefore immediate from that of the axial stress Tk
In particular, W remains bounded at the crack-tip except when the latter
is approached from within ¥, .

An analysis strictly parallel to that summarized in the foregoing
sections leads to a solution of the analogous small-scale nonlinear crack
problem for an incompressible elastic material (of the type characterized

by (1. 13)) whose response in simple shear obeys

1

See the second of (1.32).




r(k) =puk (0sks1), t(k)=pk ¥ (lsk<o) , (5.7)

in which o« is a material constant restricted by
1
0<so<l1 . (5.8)

The constitutive relation (5.7) is evidently a generalization of (1.32) and
reduces to (1.32) for a=1/2. The special case a=0 corresponds to a
shear response in which the shear stress (k) rises linearly to a value
u at k=1, and remains constant at this value as k increases from unity.

For materials governed by (5.7), (5.8),the differential equation
(1. 18) again suffers a loss of ellipticity at a solution u and at a point
(x,,%,), provided |Vu(x1,x2) |>1.

On applying the hodograph scheme to the small-scale nonlinear
crack problem for a material with the shear response (5.7), (5. 8), one is
once again led to elliptic and hyperbolic solutions of (1.18) on certain
subdomains of ¥ . In fact, Figure 5 remains applicable in the present
circumstances, provided the circle C is replaced by one of radius 1/2
centered at X,= —Zl-(l +e)/(1-0), X,=0, while the angle 0, is now
determined by sin 0= (1-0)/(1+@). Further, the formulas (3.8) and
(3.21) for the elliptic and the two hyperbolic solutions at present undergo
modifications which will not be spelled out explicitly. As in the special
case a=1/2, the elliptic solution can be matched to the appropriate
hyperbolic solution across two symmetrically situated shocks, if
0<a<l. Thus Figure 6, which illustrates the elliptic and hyperbolic

domains of the final solution for «=1/2, has a qualitatively similar

1The restriction o<1 assures the convergence of the integrals in (2.17).
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counterpart for every value of « in the open interval (0,1).

The particular case o =0, which is clearly a limiting case of
non-elliptic behavior, requires separate comment. In this instance the
circle C is centered at §1= 1/2, §2=0 and thus passes through the
origin. W‘hen a=0, it turns out, the elliptic solution — analogous to e
of (3.8) — can be joined to the non-elliptic solution corresponding to ;
in (3.21) across the entire circle C in such a way that both u and its
first partial derivatives remain continuous. Hence the final solution thus
obtained is free of shocks. It should be mentioned that the finite-crack
problem (1.18) to (1.21) for a material obeying (5.7) with a=0 is closely
related to a notch-problem for an elastic-perfectly plastic body in anti-
plane shear, solved by Hult and McClintock [7], who also employed the
hodograph method. In fact, for a notch of zero opening angle (crack) and
a sufficiently small loading at infinity, the elastic-plastic interface
established in [7] — when referred to the scaling (2.6) — passes over into
the circle C that separates the elliptic from the non-elliptic domain in
the small-scale nonlinear crack problem corresponding to o=0 in (5.7).

An additional observation pertaining to the special choice of a=0
concerns the solution deduced in [2] to the small-scale crack problem
for the limiting elliptic case n=1/2 (see Figure 2) of a power-law

material, governed by (1.30). For such a materiall.

lsee (6.52) in [2] and refer to the scaling (2.6) in the present paper.
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M/t (-mse<-m/2)
‘ limﬁ(?,e)= psinel'roo (-m/2<s9<m/2) (5.9)

-0 |
u/'rm (w/2s0sw) , {

where Too=“/"/is is the ultimate shear stress. One finds precisely the i
same result for a simple-shear response (5.7) with o=0, provided e

in (5.9) is taken to be u, as is appropriate. This agreement reflects |
the fact that the behavior of the solution at the crack-tip (as r-0) in

both the limiting elliptic case of a power-law material and the limiting
non-elliptic case corresponding to a=0 in (5.7) depends merely on the
ultimate shear stress in simple shear.

An alternative modification of (1.32) which is of interest consists in
requiring that 7(k) decline to a positive value e = rather than to zero,
as in Figure 3. In this event the final solution again involves shocks, but
these are no longer tangential to the El-axis at the crack-tip: instead,
the two shocks are now found to subtend a positive angle, which depends
on the ratio 'roo/u.

Another study of crack problems in which the appropriate differential
equations of equilibrium are not elliptic is that included in the paper of
Hutchinson [8], who investigates the perfectly plastic stress field near
the tip of a crack in a thin sheet subject to tension at right angles to the
crack. A stress discontinuity arises in the results of the analysis in [8].

In conclusion we remark that the hodograph scheme used in this
investigation is no longer available in connection with the physically more
important small-scale nonlinear crack problem associated with a crack

in a tension field under conditions of plane strain and for a material

T — . S R l.

ST A e .-n,"."‘} B ok padler b 4 -
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capable of sustaining a loss of ellipticity. In preparation for an attack

on this much more difficult fourth-order problem, it would be instructive
to find an alternative approach to the crack problem treated here that does

not rely on the hodograph method.
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